首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   199篇
  国内免费   12篇
化学   68篇
晶体学   1篇
力学   55篇
数学   13篇
物理学   642篇
  2024年   2篇
  2023年   16篇
  2022年   12篇
  2021年   13篇
  2020年   21篇
  2019年   26篇
  2018年   8篇
  2017年   36篇
  2016年   67篇
  2015年   21篇
  2014年   59篇
  2013年   13篇
  2012年   30篇
  2011年   38篇
  2010年   44篇
  2009年   56篇
  2008年   49篇
  2007年   33篇
  2006年   35篇
  2005年   23篇
  2004年   23篇
  2003年   26篇
  2002年   13篇
  2001年   6篇
  2000年   9篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有779条查询结果,搜索用时 15 毫秒
771.
凹筒型弯张式低频发射换能器   总被引:3,自引:1,他引:2       下载免费PDF全文
本文介绍了一种低频发射换能器,它结构上与Ⅰ型弯曲伸张换能器有相似之处,但呈凹筒形状,具有频率低、功率大、尺寸小、重量轻等诸多优点,且其独特的外型结构适合于组排基阵,有较好的应用前景。我们研制了大小两个该型换能器,其外型尺寸分别为φ186mm×330mm和φ130mm×250mm;谐振频率分别为855Hz和1050Hz;声源级分别为195.7dB和191.0dB。  相似文献   
772.
The elastic behavior of a material can be a powerful tool to decipher thermal transport. In thermoelectrics, measuring the elastic moduli—directly tied to sound velocity—is critical to understand trends in lattice thermal conductivity, as well as study bond anharmonicity and phase transitions, given the sensitivity of elastic moduli to the chemical bonding. In this review, we introduce the basics of elasticity and explain the origin of high-temperature lattice softening from a bonding perspective. We then review elasticity data throughout classes of thermoelectrics, and explore trends in sound velocity, anharmonicity, and thermal conductivity. We reveal how experimental sound velocities can improve the accuracy of common thermal conductivity models and present a critical discussion of Grüneisen parameter estimates from elastic moduli. Readers will be equipped with tools to leverage elasticity measurements or calculations to accurately interpret thermal transport trends.  相似文献   
773.
《印度化学会志》2023,100(2):100893
For the first time the thermal conductivity of Na–K alloy has been computed using eight theoretical equations, already developed for binary liquid mixtures. The thermal conductivity values of Na–K alloy were obtained at three different temperatures (308,348,423) K, and at four different compositions of alloy. We have employed density and sound speed data for calculating λ alloy with the help of recently developed correlation. Density-Sound speed-thermal conductivity correlation gave excellent results.  相似文献   
774.
正交频分复用(OFDM)通信系统对频率偏移比较敏感,容易导致系统性能急剧下降。水声通信中存在着严重的多普勒频率偏移,限制了OFDM技术在水下的应用。本文仿真分析了频率偏移对OFDM系统的性能影响,提出了一种适用于水声通信的频率同步方法。本方法不仅可以对固定的频率偏移进行估计,也可以对连续变化的频率偏移进行估计。仿真表明,本方法具有较高的频偏估计精度和大的频偏估计范围。湖试结果也表明,采用这种方法可有效地进行频偏估计。  相似文献   
775.
776.
Acoustic agglomeration technology use high-intensity acoustic field to make aerosol particles collide and condense rapidly. Existing studies have shown that 70%–90% of fine particles can be eliminated within minutes using compression drives and air-jet generators. Currently, there are limitations to the sound sources used. In this paper, an airborne ultrasonic transducer with a resonant frequency of 15 kHz is designed, followed by the corresponding numerical simulation and experiments for the evaluation of the vibration modal and sound pressure field. The sound pressure levels (SPL) of the open space and the agglomeration chamber can reach 150 dB and 156 dB, respectively. The agglomeration effect of water droplets, liquid phase smoke, solid phase smoke and mixed smoke is experimentally investigated, and the light transmittance rapidly increases from 8% to 60% within 4 s, 8 s, 5 s and 6 s, respectively. Agglomeration is also effective in the high-frequency range, and we infer that the acoustic wake effect is the predominant mechanism. The elimination effect is promoted with the increasing of SPL until the corresponding secondary acoustic effect is enhanced. Moreover, the agglomeration rate of higher concentration aerosol is significantly better than that of diluted aerosols in ultrasonic agglomeration process.  相似文献   
777.
We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H). Eulerian-Lagrangian analysis has shown that, in comparison to VOF, it is more effective in revealing microscopic characteristics of unsteady cavitating flows, including microscale bubbles, that are unresolvable around the cloud cavity, and their impact on the flow field. It is also evident that its evolution of cavitation features on the hydrofoil is more consistent with the experimental observations. The frequency of the maximum sound pressure level corresponds to the frequency of the main cavity shedding for the noise characteristics. Using the Eulerian-Lagrangian method to predict the noise signal, results show that the cavitation noise, generated by discrete bubbles due to their collapse, is mainly composed of high-frequency signals. In addition, the frequency of cavitation noise induced by discrete microbubbles is around 10 kHz. A typical characteristic of cavitation noise, including two intense pulses during the collapsing of the cloud cavity, is described, as well as the mechanisms that underlie these phenomena. The findings of this work provide for a fundamental understanding of cavitation and serve as a valuable reference for the design and intensification of hydrodynamic cavitation reactors.  相似文献   
778.
水声信号处理领域若干专题研究进展   总被引:17,自引:0,他引:17       下载免费PDF全文
本简述了近年来水声信号处理领域中若干专题的研究进展。包括水声通信,合成孔径声纳,水声数据融合,声层析以及水下GPS系统等。  相似文献   
779.
左公宁 《应用声学》2003,22(6):24-28
文中给出了电火花声源的压力波形及其频谱图,着重讨论了储能与压力波峰值P1m,和半峰值之间P1m/2的时间t1之间的关系,以及刚性圆筒内放电时边界对P1m和t1的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号